DNA sequencing by synthesis using 3'-O-azidomethyl nucleotide reversible terminators and surface-enhanced Raman spectroscopic detection.
نویسندگان
چکیده
As an alternative to fluorescence-based DNA sequencing by synthesis (SBS), we report here an approach using an azido moiety (N3) that has an intense, narrow and unique Raman shift at 2125 cm-1, where virtually all biological molecules are transparent, as a label for SBS. We first demonstrated that the four 3'-O-azidomethyl nucleotide reversible terminators (3'-O-azidomethyl-dNTPs) displayed surface enhanced Raman scattering (SERS) at 2125 cm-1. Using these 4 nucleotide analogues as substrates, we then performed a complete 4-step SBS reaction. We used SERS to monitor the appearance of the azide-specific Raman peak at 2125 cm-1 as a result of polymerase extension by a single 3'-O-azidomethyl-dNTP into the growing DNA strand and disappearance of this Raman peak with cleavage of the azido label to permit the next nucleotide incorporation, thereby continuously determining the DNA sequence. Due to the small size of the azido label, the 3'-O-azidomethyl-dNTPs are efficient substrates for the DNA polymerase. In the SBS cycles, the natural nucleotides are restored after each incorporation and cleavage, producing a growing DNA strand that bears no modifications and will not impede further polymerase reactions. Thus, with further improvements in SERS for the azido moiety, this approach has the potential to provide an attractive alternative to fluorescence-based SBS.
منابع مشابه
Four-color DNA sequencing with 3'-O-modified nucleotide reversible terminators and chemically cleavable fluorescent dideoxynucleotides.
DNA sequencing by synthesis (SBS) on a solid surface during polymerase reaction can decipher many sequences in parallel. We report here a DNA sequencing method that is a hybrid between the Sanger dideoxynucleotide terminating reaction and SBS. In this approach, four nucleotides, modified as reversible terminators by capping the 3'-OH with a small reversible moiety so that they are still recogni...
متن کاملRapid incorporation kinetics and improved fidelity of a novel class of 3′-OH unblocked reversible terminators
Recent developments of unique nucleotide probes have expanded our understanding of DNA polymerase function, providing many benefits to techniques involving next-generation sequencing (NGS) technologies. The cyclic reversible termination (CRT) method depends on efficient base-selective incorporation of reversible terminators by DNA polymerases. Most terminators are designed with 3'-O-blocking gr...
متن کاملFour-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators.
DNA sequencing by synthesis (SBS) on a solid surface during polymerase reaction offers a paradigm to decipher DNA sequences. We report here the construction of such a DNA sequencing system using molecular engineering approaches. In this approach, four nucleotides (A, C, G, T) are modified as reversible terminators by attaching a cleavable fluorophore to the base and capping the 3'-OH group with...
متن کاملDesign and synthesis of a photocleavable fluorescent nucleotide 3'-O-allyl-dGTP-PC-Bodipy-FL-510 as a reversible terminator for DNA sequencing by synthesis.
DNA sequencing by synthesis (SBS) using reversible fluorescent nucleotide terminators is potentially an efficient approach to address the limitations of current DNA sequencing techniques. Here, we report the design and synthesis of a 3'-O-allyl photocleavable fluorescent nucleotide analogue, 3'-O-allyl-dGTP-PC-Bodipy-FL-510, as a reversible terminator for SBS. The nucleotide is efficiently inco...
متن کاملA new class of cleavable fluorescent nucleotides: synthesis and optimization as reversible terminators for DNA sequencing by synthesis†
Fluorescent 2'-deoxynucleotides containing a protecting group at the 3'-O-position are reversible terminators enabling array-based DNA sequencing by synthesis (SBS) approaches. Herein, we describe the synthesis of a new family of 3'-OH unprotected cleavable fluorescent 2'-deoxynucleotides and their evaluation as reversible terminators for high-throughput DNA SBS strategies. In this first versio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- RSC advances
دوره 4 90 شماره
صفحات -
تاریخ انتشار 2014